
Random Embeddings for Robust Deep Learning
(Research)

Nathan Blair
3rd Year Undergraduate

3031828892
Email: nblair@berkeley.edu

Adarsh Karnati
3rd Year Undergraduate

3031839773
Email: akarnati@berkeley.edu

Abstract— We propose the Random Feature Embed-
ding Layer (RFEL), a novel regularization technique for
deep neural networks. RFEL is inspired by Rahimi and
Rechts Random Fourier Features for kernel machines.
Our layer increases model robustness to common noise
patterns such as Gaussian additive noise. RFEL performs
comparably to or better than the popular regularization
techniques weight decay and dropout. RFELs are a
promising regularization technique, but more work is
needed to determine their viability on large-scale models.

I. INTRODUCTION

Machine learning models can be fragile in the
face of even slight distributional shifts between
the training and test sets [1]. However, the human
visual system is extremely robust to moderate cor-
ruptions in visual data; See Figure 1. Notably, the
human visual system is robust to weather changes
(e.g. snow, fog, rain), pixelation, compression ar-
tifacts, additive noise, lighting, and more complex
style transfers [1]. These distributional shifts are
common in practice, especially when the test set
is pulled from a different data source from the
training set.

When machine learning models fail to gener-
alize to common visual corruptions, the results
can be life threatening. Consider the case of a
self driving car that must be able to operate in
all weather conditions, snow, rain, sleet, fog, and
more, but is primarily trained in a sunny city. The
failure of self driving cars in bad weather could
easily lead to the death of a passenger.

One highly cited example of machine learning
models performing poorly in the face of distri-
bution shift is Google Flu Trends. Launched in
2008, Google Flu Trends [2] was a project aimed
at predicting how many people have the flu based
on web searches. Initially the program made ac-

curate and quick predictions, even faster than the
Center for Diseases Control by up to two weeks.
However, by 2013 the model produced completely
inaccurate predictions, the culprit being an unac-
counted change in how users were searching [3].
The learned model was unprepared to account for
distributional changes in the input. In general, it is
not possible for a learned model to adapt to any
distributional change in the test data. However, it
is possible to make models more robust to specific
types of distributional shifts in the data, such as
corruption and noise.

Corruption and noise robustness is very closely
related to the problem of overfitting. Models that
overfit, are those that have a very high train ac-
curacy, but low test accuracy. This suggests that
the model does not generalize well and therefore
cannot be used to make accurate predictions on
unseen data. From the perspective of noise ro-
bustness, models that overfit do not capture the
underlying patterns in the data, and can therefore
be susceptible to small perturbations. It is often
easy for Deep Neural Networks (DNNs) to fit noise
present in the training data, especially when the
capacity of the network is high [4].

There are numerous ways to increase the ro-
bustness of machine learning models to overfitting
and various distributional shifts [4], [5], [6], [7],
[1]. Notably, weight decay and dropout are popular
because of their easy implementation and high
effectiveness for model regularization.

We introduce the Random Feature Embedding
Layer (RFEL) to tackle the problems of overfit-
ting and poor generalization to distribution shift
and visual corruptions. The RFEL is based on
a Random Fourier Feature embedding, proposed
by Rahimi and Recht as a kernel method for



increasing model accuracy and reducing model
size [8]. In the setting of kernel methods, we note
that Random Fourier Feature embeddings not only
increase model accuracy, but also increase model
noise robustness. We show that the same intuition
can be applied in the neural network setting with
RFELs.

Our contributions are as follows:
• We propose the Random Feature Embedding

Layer (RFEL), a novel regularization tech-
nique for deep neural networks.

• We show that RFEL increases model robust-
ness to common noise patterns.

• We show that RFEL performs comparably
to or better than the popular regularization
techniques weight decay and dropout in terms
of increasing corruption robustness and de-
creasing overfitting.

II. RELATED WORK

A. Overfitting and Regularization in DNNs

Overfitting in neural networks has been a known
issue since neural networks became popular with
linear perceptron methods [9]. Likewise, there has
been much work studying the causes of overfitting
and ways to prevent it. Caruana et al. show that
early stopping prevents overfitting in neural net-
work models trained with gradient descent [4]. Zur
et al. show that injecting noise in the training data
can be used to prevent overfitting [5]. Intuitively,
injecting noise in the training data may teach the
model not to consider noise when making predic-
tions. Krogh et al. showed that adding a weight
decay when training a neural network acts like
L2-Regularization and helps models to generalize
better to test data [6]. Srivastava et al. proposed
adding a dropout layer to reduce overfitting [7].
The dropout layer randomly zeros some of the
activations from the previous layer. This prevents
neurons from co-adapting too much [7]. We com-
pare our random feature embedding layer to weight
decay and dropout, which are widely popular.

B. Model Noise Robustness

While the human visual system is robust to
various visual corruptions such as blur, additive
noise, and weather related noise, popular computer

vision systems are, in general, not. Vasiljevic et al.
show that convolutional models make unreliable
predictions when presented with blurred images
[10]. While noise robustness is not widely studied
in the context of vision, it is a popular topic
for speech and audio papers, where they defend
against various additive noises. This is because
audio noise is far more common in practice, often
coming from ambient noise like wind and back-
ground conversations [11], [1]. Hendrycks et al.
released a set of benchmarks, methods and datasets
for evaluating model performance against a set of
common noise corruptions [1]. We use their dataset
for evaluating our models.

C. Model Adversarial Robustness

Images can be corrupted by small amounts of
noise such that the changes are indistinguishable to
a human, but changes the prediction of a classifier.
This has become a commonly studied issue in
robustness literature, especially in the context of
model robustness of image classifiers. In essence,
measuring a network’s adversarial robustness is
measuring its performance in the worst possible
case. While many methods have been proposed to
defend against adversarial attacks against neural
network models, new methods have been created
to get around those defenses [12], [13], [14]. This
has resulted in an arms race in adversarial attacks
and defenses with no clear winner. We do not
consider adversarial attacks in this paper. However,
there is evidence to show that increasing corruption
noise robustness also increases adversarial robust-
ness [15]. So, by showing an increase in noise
robustness, we also hypothesize that the inclusion
of RFEL will increase adversarial robustness.

D. Random Feature Embeddings

Random Feature Embeddings were introduced
by Ben Recht and Ali Rahimi in their 2007
paper Random Features for Large-Scale Kernel
Machines [8]. They propose Random Features as
a method to speed up the computation of kernel
machines by randomly projecting the data in a
way such that inner products in the projected space
roughly approximates a user-specified kernel. We
apply this method directly in the creation of our
Random Feature Embedding Layer.



Random Feature Embeddings improve the speed
of linear models and may also improve the accu-
racy. Since generating these embeddings is quick,
projecting the data into a very high dimensional
space is tractable, meaning that the data might be
able to be made linearly separable.

III. METHODS

A. Problem Formulation

We have a set of images, X , and correspond-
ing labels, Y , and seek to learn a classifier f :
X → Y . X ⊂ RC×H×W , with C the number of
image channels, H the image height and W the
images width. We partition X and Y into two
random subsets, denoted as (Xtrain,Ytrain) and
(Xtest,Ytest), where |Xtrain| = |Ytrain| = n and
|Xtest| = |Ytest| = k. We train a classifier f̂ using
empirical risk minimization with the commonly
used Cross Entropy Loss (CEL) function:

f̂ = argmin
θ

1

n

∑
(xi,yi)

CEL(fθ(xi), yi) (1)

where (xi, yi) ∈ (Xtrain,Ytrain).
We define the robustness of f̂ to a noise model,

ψ : RC×H×W → RC×H×W as the average accu-
racy of our classifier on the test set with images
corrupted by the noise model:

1

k

∑
(xj ,yj)

I(f̂(ψ(xj)) = yj) (2)

where (xj, yj) ∈ (Xtest,Ytest).

B. Random Fourier Feature and Embedding Layer

Define Random Fourier Features as the feature
mapping:

z(x) =

√
2

D
cos(Wx+ b) (3)

x ∈ Rd, z(x) ∈ RD,W ∈ RD×d, b ∈ RD

Wij ∼ N (0, σ2), bi ∼ Uni(0, 2π)

with d the raw feature dimension and D the
embedding dimension [8].

We define a Random Feature Embedding Layer
(RFEL) as a neural network layer that simply
embeds the activations of the previous layer. RFEL

does not contain any trainable parameters. It ran-
domly projects the features and then applies a
nonlinear activation function. Note that RFEL must
be placed after convolutional layers, if they are
in the network, since RFEL scrambles the relative
spatial content of the previous layers’ activations.

C. Noise Models

The noise models we consider in this paper
are based on [1]. These models have a severity
parameter ranging from one to five that describe
the intensity of the noise applied to images. These
noise models are algorithmically generated and
represent the most common corruptions present in
image data. We use the Gaussian noise, shot noise,
and Gaussian blur, see Figure 1, but only discuss
Additive Gaussian Noise in detail throughout the
paper to be concise.

Fig. 1: Gaussian Noise, Shot Noise and Gaussian
Blur

D. Datasets

In this paper we evaluate RFEL on the Mod-
ified Natural Institute of Standars and Technol-
ogy (MNIST), Fashion MNIST, and the Cana-
dian Institute for Advanced Research (CIFAR-10)
datasets [16], [17], [18]. MNIST is a 10-class
dataset of handwritten digits (0 through 9) and is
often considered the first widely used benchmark
on classification tasks. Each image is a single
channel, 28× 28 array of integers from 0 to 255.
While MNIST is perhaps the most well known
dataset for classification, in the past few years,
advances in deep learning have made the digit
classification problem too easy. For example, state
of the art convolutional neural networks achieve a
top-5 error rate of 0.21%.

This lack of difficulty led to the development
of Fashion MNIST. Fashion MNIST is a 10-class
dataset of gray scale clothing images. The images



have the same size and number of channels as
the regular MNIST dataset, but classification on
Fashion MNIST has been found to be empirically
more difficult. This increase in difficulty has made
Fashion MNIST the new basic benchmark in clas-
sification for deep models.

CIFAR-10 is a 10-class dataset of colored im-
ages (3 channels), with labeled objects. Each im-
age in CIFAR-10 is 32 × 32, slightly larger than
both MNIST and Fashion MNISt images. CIFAR-
10 is another benchmark dataset, but is considered
much harder to train on than Fashion-MNIST and
MNIST. The higher dimensionality of CIFAR-10
(3×322) for a flattened image) and low resolution
of the images are considered the main reasons for
the difficulty of the dataset.

MNIST, Fashion MNIST and CIFAR-10 will
provide a good spread of dataset difficulty as we
analyze RFEL in deep models. We will be able
to analyze if RFEL prevents overfitting in MNIST
for example or if it hinders training in CIFAR-10.
The reason we only consider these datasets in the
following experiments rather than a much harder
dataset, such as ImageNet, is that training was
done on a single CPU as no GPUs were available.

IV. RESULTS

A. Linear Classifier

As a sanity check for our method, we first con-
struct two linear classifiers trained on the original
MNIST, Fashion MNIST and CIFAR-10 datasets.
We maintain the intuition that linear models serve
as the first step to understanding the effect of
new architectures, and often generalize to deeper
models. Our baseline model uses the raw data,
while our embedded model uses Random Fourier
features. Both models were trained on clean train
set data, but evaluated on noisy test set data. The
test data was corrupted with all the noise models
described in the Methods section and evaluated.
We compared the baseline model to embedding
models with embedding dimension 784. We kept
the embedding dimension at 784, the same number
of features as the raw data, to observe if the
embedding provides a more informative feature
space than pixel values.

It is clear that the embedding classifier outper-
forms the vanilla least squares estimate on MNIST

Fig. 2

Fig. 3

and Fashion MNIST datasets, with Gaussian Noise
on the test set. We note that there is virtually
no drop in accuracy for the embedding model for
images corrupted by Gaussian noise, compared to
a somewhat linearly decreasing accuracy for the
baseline model. This suggests that embedding the
data does provide a better way to represent the
raw data than pixel values, and that the addition
of noise does not hinder the underlying structure
represented by the embedding.

The embedding model also overfits less than the
vanilla linear model, see Figures 2, 3. This aligns
with our intuition that random embeddings act as
a regularizer. It is also worth noting that in the
linear setting, adding a random feature embedding
improves model accuracy for large enough embed-
ding dimension. This makes sense, because we are
approximating a gaussian kernel when we embed,
meaning we are able to extract nonlinear features
from the input data. Note that we do not show the
results from the CIFAR-10 dataset, since the linear



model does not have enough capacity to provide
meaningful results on this dataset.

B. Fully Connected Network

With the linear model producing promising re-
sults, we considered a random embedding layer in
a fully connected neural network. The network we
use is a simple single hidden layer with 512 hidden
units and a ReLU activation. Our baseline model
accepts a flattened image while the embedding
model first embeds the image and then sends the
embedded features into the rest of the network.
Both models are trained with RMSprop Gradient
Descent. The networks are trained on the clean
training data from MNIST, Fashion MNIST and
CIFAR-10 and evaluated on the test data from each
of these datasets. All neural network models in the
later parts as well as this section are trained until
there is less than a 1% improvement in training
accuracy between epochs.

Fig. 4

Fig. 5

Interestingly, for Gaussian noise on the MNIST
dataset, the baseline model has a slightly higher
clean test accuracy than the embedding model,
which is different from the results in the Linear
Model experiments. This might be explained by
the fact that RFEL regularizes the network and for
small model architectures, this can have a negative
effect for test accuracy.

However, The embedding model was also more
noise robust than the baseline model. This aligns
with our proposition that the RFEL increases noise
robustness.

The fully connected embedding models are also
less prone to overfitting than the fully connected
baseline models. We would expect a model that
overfits to also have low noise robustness, because
overfitting can be seen as fitting to the noise in the
training data. Thus, the fact that the embedding
model overfits less is a sign that it is learning a
more robust representation of the data. Note that
we do not show the results from the CIFAR-10
dataset, since the fully connected models do not
have enough capacity to train properly and provide
any meaningful results, similar to the linear model.

C. Convolutional Networks
The baseline convolutional network we used

for our experiments consists of two convolutional
blocks and two linear layers each of 512 units.
Each convolutional block is composed of a 5 × 5
kernel outputting 32 channels, a stride 2, 2 × 2
MaxPool and a ReLU activation. A ReLU activa-
tion was placed inbetween each linear layer. In our
embedded convolutional model, the architecture is
exactly the same as in the baseline model, but
with an RFEL of embed dimension 512 after the
entirety of the convolutional layers and before any
linear layers. Below are the comparisons of these
two models on all datasets with gaussian noise
added to the test set.

In Figure 6, we see that the convolutional
model with embedding performs far better than
the baseline convolutional model on MNIST. It is
interesting to note that despite the convolutional
layers processing the noisy image before the em-
bedding layer, RFEL still helps the model reject
noise. While the embedding convolutional model
outperforms the baseline model, it is important to
note that the baseline model only drops around



Fig. 6

2% in accuracy and that both models achieve very
high performance on MNIST. This is most likely
due to simplistic nature of the MNIST dataset and
in our analysis of RFEL, we should focus more on
Fashion MNIST and CIFAR-10.

Fig. 7

The same trend we see with the MNIST plot is
also present in Fashion MNIST analysis. We note
that both baseline and embedding models trained
on Fashion MNIST have a clean test accuracy far
lower than that of the models trained on MNIST.
However, the baseline model trained on MNIST
has a far smaller drop in accuracy in comparison
to the baseline model trained on Fashion MNIST.
This suggests that the baseline model trained on
Fashion MNIST overfit to the training data and
did not fully capture the underlying structure of
the data.

The first observation we see with the convolu-
tional models trained on CIFAR-10 is that both
models have a mediocre clean test accuracy. This
is most likely caused by the capacity of both

Fig. 8

networks not being large enough to adequately
train on CIFAR-10. Additionally we note that the
drop in accuracy for both models is significant and
that the embedding model does not hold its accu-
racy as the networks trained on the other datasets
do. However, it is clear that over all datasets, a
convolutional network with an RFEL can provide
some robustness benefits in comparison to a vanilla
model.

D. ResNet6 Networks
The next model we experimented with is the

popular ResNet architecture [19]. ResNet is a
convolutional model that adds the activations of
the previous layer to those of the next layer.
Additionally, ResNet is fully convolutional except
for the last layer which outputs the logits. This
network layout has been showed to greatly reduce
overfitting and produce state of the art results on
several benchmarks.

Our baseline model is a reduced version of
ResNet in both width and depth. Specifically, the
baseline network has 6 layers of resnet blocks and
64 convolution channels per block. The embedding
model we chose was exactly the same as the the
baseline model, except for one RFEL after all
convolutional layers, right before the final logits,
with a embedding dimension of 1000.

We see that ResNet6 on MNIST attains a near
perfect clean test accuracy with both the baseline
and embedding networks. One point of interest is
that the relative drop in accuracy over the different
severity levels appears to be the same for both
models. Ultimately, it is difficult to determine how
well RFEL affects noise robustness on ResNet6



Fig. 9

when the dataset is MNIST, as these models are
powerful enough to fully capture the dataset infor-
mation.

Fig. 10

In Figure 10 we see that the both the embedding
and baseline ResNet6 models achieve roughly the
same clean test set accuracy and also have around
the same drop in accuracy for different severities
of Gaussian noise.

From the experiments with ResNet6 trained on
CIFAR-10, we conclude that RFEL does not have
significant noise robustness in comparison to a
regular ResNet6 model. This can be seen on all
datasets and all severity levels. This suggests that
the ResNet architecture itself prevents against im-
age noise, perhaps due to the batch normalization
layers or the additive identity component unique
to ResNet models.

E. Convolutional Network with Dropout
Dropout is a technique first proposed in 2014

as a regularization method for neural networks [7].

Fig. 11

During training, a network with dropout zeros the
activation of a nueron with some probability p. We
compare a convolutional network with RFEL to
networks with dropout at p = 0, p = 0.25, p = 0.5,
p = 0.75. The embedding model we use is exactly
the same as in the Convolutional Network section
and the dropout occurs right after the convolutional
layers in the baseline model.

Fig. 12

The embedding network appears to have a
higher noise robustness in comparison to the other
dropout networks on MNIST. On Fashion MNIST,
the difference between the embedding network
and the networks with dropout is more negligible
but still visible. Interestingly, in our experiments,
dropout seemed to make the networks less robust
to noise in the test set, as seen in 13.

F. Convolutional Network with Weight Decay
Weight decay is another regularization technique

commonly used in neural networks [6]. In this
method, the weights of the network are slowly



Fig. 13

decayed to 0 using a hyperparameter α, which
prevents against large magnitude weights. Large
magnitude weights are strongly correlated with
overfitting, since slight perturbations in activations
can lead to dramatic changes in the next layer acti-
vations. We compare the embedding convolutional
network from the Convolutional Network section
to the same baseline convolutional networks with
weight decay at α = 0, α = 0.1, α = 0.01,
α = 0.001.

Another factor in comparing weight decay to
RFEL is that weight decay often slows down as
the training procedure progresses. However, this
is not the case with RFEL since the layer has no
trainable parameters.

Fig. 14

In Figure 14 we see that the embedding model
outperforms all other models with weight decay
on MNIST. In Figure 15 the embedding network
produces a lower accuracy than some of the weight
decay networks. These results suggest that RFEL
has comparable ability to make networks as robust

Fig. 15

as with weight decay.

V. CONCLUSION

We show that RFELs are an effective regularizer
for neural networks. That is, on small models,
RFEL improve model robustness to corruption
noise and reduce overfitting. Furthermore they are
a low cost solution to common problems. They are
easy to insert into DNNs as a network layer, and
do not empirically increase training time. Since
we were compute-limited for this research, it is
unclear how RFELs will perform in larger models.
Furthermore, RFEL performance is heavily reliant
on the hyperparameter which controls the variance
of the random vector that the data is projected onto.
This reliance on a hyperparameter is a downside
to using RFELs.

The following will be left for future work:
• Determine whether RFEL will generalize to

larger networks. In this paper, the RFEL had
the most dramatic effect on smaller networks
and the linear case. It will be important for
future work to investigate when and why
RFELs stop providing as much regularization
for more complex models.

• Assess RFEL on higher dimensional
data/larger images. Due to computation
constraints, we evaluated RFEL only on
the small datasets CIFAR10, MNIST, and
Fashion-MNIST. It will be important to
test whether our results generalize to more
complex image datasets such as ImageNet
[20]. Non-image data should also be
examined.



• Analyze the effects of the RFEL σ parameter.
Our implementation of RFEL is highly sen-
sitive to the hyper-parameter which controls
the variance of the random vectors which are
projected onto in the embedding. In future
work should explore whether an optimal σ
can be defined. Furthermore, it is possible
that normalizing the input size to the RFEL
will allow for finding an optimal σ in a more
general setting,

• Incorporate spatial preservation into RFEL.
The RFEL destroys spatial data by randomly
projecting the input image as a vector. It does
not take the inherent local structure of the
image into account. Future works could inves-
tigate random convolutions which incorporate
the spatial information of most images and
their effect on regularization.

• Determine the effect of RFEL on adversarial
robustness. We hypothesize that the inclusion
of RFEL will increase adversarial robustness,
because there has been shown to be a link
between corruption noise robustness and ad-
versarial robustness [15]. However, we have
not shown this directly in this work.
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