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Abstract

Variational Autoencoders (VAEs) learn latent represen-
tations of data that can be useful for downstream tasks.
However, the VAE loss function encourages all latent em-
beddings to cluster around the origin, which while useful for
certain tasks, disincentivizes semantically meaningful rep-
resentations. Furthermore, VAE training is unsupervised,
even when label information may be available. We propose
enforced clustering in the VAE latent space for a more cat-
egorically meaningful learned representation. We achieve
this with both supervised and unsupervised methods for la-
tent clustering, each of which outperform our benchmarks
on reconstruction and sampling tasks.

1. Introduction

The Variational Autoencoder (VAE) was introduced as
a way to efficiently learn a compact latent space that can
be used for inference and other learning tasks [11]. Since
then, VAEs have been succesfully implemented for denois-
ing, interpolating between data feature and learning com-
pact latent spaces [9, 11, |, 14]. We can also use VAEs
for generative processes like creating random video game
models, handwritten text samples, and photorealistic im-
ages [0, 8, 4].

In this project, we hope to improve on the latent space
representation of VAEs. VAEs take input data and use an
Encoder network to convert them into a shortened latent
vector that represents a distribution over learned attributes
of the data. Then, a Decoder network samples from this dis-
tribution and constructs a representation of the original high
dimensional data [11].

The original VAE paper does not enforce any clustering
of data based on class. We propose both supervised and
unsupervised clustering of the data in the latent space. We
show that this enables cluster-specific sampling of the latent
space in the unsupervised case, and class-specific in the su-
pervised case. Like in the setting of conditional-VAE [15],
we are able to interact with high level features of the out-
put image by moving in the latent space. We also show that
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enforcing clustering in the latent space also may slightly
improve reconstruction error.

2. Related Works

The original VAE implementation is strictly unsuper-
vised, and hence has no clustering based on classes [11].
However, later works encourage clustering using Gaussian
mixtures as a prior in conjunction with a minimum informa-
tion constraint [3, 10]. Variational Autoencoders have also
been used as a tool for clustering [10].

In the setting of Generative Adversarial Networks
(GANS), clustering in the latent space has been shown to
be an effective tool for semantic clustering [13]. We take
inspiration from the paper by Sudipto et al. which performs
clustering in the GAN latent space [13].

3. Background

Before diving into the experiments we performed and
different variations of VAEs we used, it is important to first
understand VAEs and some of its existing variations. As
mentioned in the introduction, VAEs are made up of two
networks, the encoder and the decoder. If we denote the
image data point as x and the latent noise vector as z, the
encoder can be represented as gg(z|z), outputting the pa-
rameters of a Gaussian function. Then, when we sample
from this distribution, we can feed it into the decoder. This
is modeled as pg(x|z), and outputs the probability density
of the reconstructed image.

Given the model mechanics of a VAE, we can look more
closely at the loss function. It is represented for a sin-
gle datapoint z; as [;(0,¢) = E. g,(z|z,)logpg(zi]2) +
KL(go(2|x;)||p(2)). We can decompose this loss term by
term. The first term represents the reconstruction loss,
based on how well the encoder-decoder network is able
to reconstruct a given data point. The second term is the
KL-divergence loss, which enforces the constraint that the
distribution datapoints are encoded to be close to a normal
Gaussian distribution centered at the origin. Intuitively, this
term serves as a regulizer and encourages the least amount
of information is lost between ¢ and p.



3.1. Beta-VAE

Beta-VAEs [7] are a variation the VAE that, much like
our work, attempts to imbue more meaning into the la-
tent space. It hopes to disentangle the different latent
dimensions, and thus provide a more meaningful latent
space. This is similar to what the InfoGAN [2] does for
the GAN [5]. In practice, this goal presents itself through
a small modification to the loss function, in which the KL-
divergence loss term now has a multiplicative weight of (.
Likewise, regular VAE can be seen as Beta-VAE with a
value of 1.0. This bottleneck encourages the model to be
much more efficient in its latent representation. This results
in a more disentangled and meaningful latent space.

3.2. Conditional VAE

Conditional VAEs (CVAE) [15] are yet another variation
of VAE that attempt to embed class information into the
latent space. Whereas we hope to provide a disentangled
latent space based on categorically meaningfully represen-
tations, this VAE maintains an entangled latent space like
the original VAE, as can be seen in Figure 3.2. Conditional
VAE is able to use class information by first concatenating
each data point x;, as well as its corresponding latent vector
z;, with a one hot encoding of its ground truth class label be-
fore being fed into the network. Thus, CVAE uses the con-
catenated label, along with a latent represenation centered
around O for all classes, to perform class specific sampling.
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Figure 1. The latent space of a conditional VAE, inherently not
structured categorically.

4. Methods

The two methods we used to enforce a more categor-
ically meaningful latent space both intuitively attempt to
pushing groups of the same class, away from groups of a
different class. Our inspiration for this idea comes from
the Siamese Network’s contrastive loss function [ 12], which
has the same intended effect of pushing the same classes
closer together and different ones further apart.

Our first method, which we will term Lambda-Hot Clus-
tering, comes from the idea that VAEs ignore class infor-
mation that may be available. Because we know how we
want the latent space to look in an ideal world (clusters of
each class to be fairly separate from each other), we might
as well impose this constraint onto the training. Whereas
in the original VAE we had a loss term of the KL diver-
gence from a normal Gaussian distribution, we are now
looking at a different KL. divergence. If we take a look
at KIL(gg(z|z;)||p(z)), what we are doing is changing the
prior that we have, p(z), do be a different lambda-hot en-
coding (one hot encoding but A instead of one) depend-
ing on what our known label y; is. For example, if z;
has a label of 2, z dimension of 10, and A value of 5, we
will enforce the mean of the encoded latent vector to be
[0,0,5,0,0,0,0,0,0,0]. What this does, is takes advantage
of the knowledge that we have to create class centers at var-
ious points in the latent space. We found A values greater
than 1 to be better at this, because the variance is already 1,
so enforcing a mean of 1 does not push it out nearly enough.

Sometimes, however, we do not have class labels for our
image. In this context, the unsupervised setting of the VAE
is essential. To address this, while still pursuing our goal of
clustering in the latent space, we propose k-means cluster-
ing in the latent space. The k-means algorithm finds clusters
that represent different groups of the data without looking
at classes. We use the clusters found by k-means to alter the
KL divergence loss in a similar manner to that of Lambda-
Hot clustering. That is, we compute the KL divergence be-
tween the latent vector and its nearest k-means cluster. Fur-
thermore, we update the k-means clusters each epoch.

This allows us to enforce that the natural clusters found
in the data are preserved. If two datapoints are initially en-
coded into separate clusters, those clusters will not be de-
stroyed by the VAE training. Without our method, all latent
points are pushed to be clustered around the origin, which is
counterintuitive when there is variation in the data. Instead,
the natural clusters in the data are enforced by using them
to compute loss, and also because cluster centers are recom-
puted after each epoch. One downside of this method is
that we are forced to create our initial clusters based on the
data encoded by the untrained network. This means that the
clusters may not necessarily be as meaningful. We show in
section 5.2 that qualitatively, this method is still able to pro-
duce semantically meaningful groupings. Another down-
side of this method is that it requires the number of clusters
to be set as a hyperparameter. In the unsupervised setting,
the number of clusters within in the data in not always obvi-
ous, especially when some classes may be split into multiple
clusters, or multiple classes sent to the same cluster. We ar-
gue that this weakness is minor compared to the benefits of
doing k-means clustering in the latent space.



4.1. Comparison Metrics

In order to compare our methods with the baselines of a
regular VAE, conditional VAE, and Beta-VAE, we decided
upon two sets of metrics: qualitative and quantitative. Each
was used when relevant on comparisons.

4.1.1 Qualitative Metrics

For our qualititative metrics, there were two that we em-
ployed. The first was sampling from different places in the
latent space, and looking at what this resulted in the im-
age space. For example, if we cluster the regular VAE in
the latent space and find 10 clusters, when we sample will
we find that each cluster corresponds to a different digit,
or rather would we discover that each cluster corresponds
to some aspect of writing such as line thickness. Sampling
and feeding the noise vector through the decoder can answer
these questions for us.

The second qualitative metric we employed was looking
at the t-SNE [16] of the latent space. We colored each data
point by the color of its label in order to help better grasp
how well class-relevant groupings were learned in the latent
space.

4.1.2 Quantitative Metrics

Although incredibly insightful, Qualitative metrics prove a
little hard to compare amongst different methods, especially
when they are very similar. Thus, we also employed a num-
ber of quantitative metrics that allow us to better rank algo-
rithms against each other. The first quantitative metric we
used is reconstruction loss. We want to make sure that a
model does not solely learn to cluster and have a meaning-
ful latent space, but also still retains the important encoder-
decoder relationship that does not lose information when it
is fed through the model. The next metric we used has two
variations, but the general idea is performing a version of
classification using the VAE. We can do this by assigning
each of the 10 clusters we find in the latent space to a la-
bel, and classifying a test point with whatever label of the
cluster that it falls into. We can also do this by adding a
simple linear classifier that takes a noise vector from the la-
tent space as input and outputs a class label. The reason we
chose such a metric is because if the latent representation
of a data point is categorically meaningful, then a classifier
should be able to work very well when it only has access to
this vector. However, if the learned embedding is not very
categorically meaningful, then this end classifier will have a
very hard time determining the class label from simply the
embedded vector.

5. Experiments

We conducted our experiments on the MNIST [CITE]
and FashionMNIST [17] datasets.

5.1. Lambda-Hot Clustering

We tried many different values of A for these experi-
ments, and found that there were some differences between
datasets, but 5.0 struck a nice balance between pushing each
class far from others in the latent space, without pushing
them so far that the shared features would not be able to be
taken advantage of. The latent space had a dimension of 20,
where the latter 10 were able to be used to represented the
shared features amongst the classes. This is akin to how the
InfoGAN [2] has the first few dimensions of its latent space
used to provide more specific meaning, and the latter di-
mensions are for shared characteristics. In our case we hope
that the first ten dimensions will provide the class-specific
meaning, and the latter will be able to focus on other aspects
of the image.

Using the metrics specified in Section 4.1, we perform
experiments using a beta value of 5.0 in our baseline exper-
iments. For the qualitative comparisons, we present visuals
for the latent space using t-SNE. We can see that in com-
parison to the regular VAE and beta-VAE, whose purpose is
to make the latent space more meaningful, the lambda-hot
method very clearly clusters the points more categorically
than the other methods, as shown in Figure 5.1 and 5.1 for
the two datasets.

For another way to measure how well this clustering
works, we apply our second qualitative metric for our
method comparing against conditional VAE’s. Comparing
the latent space of our method to that of a conditional VAE’s
does not make sense, because a conditional VAE inherently
has a latent space without clusters, because the label is pro-
vided as extra information that is appended to the latent
space. Thus, by comparing against the conditional VAE,
whose entire purpose is to be able to sample specifically
for each class, we are comparing against the most difficult
baseline. In Figures 5.1 and 5.1, it can be seen that by sam-
pling from the latent space from a vector where the first ten
dimensions are structured so that we are selecting for a par-
ticular class, we are able to successfully enforce what kind
of an image it will look like in the latent space. Our method
works very well and gives us complete control in selecting
the image of the class label we want, simply by carefully
sampling from the latent space. Surprisingly, our method
qualitatively outperforms Conditional VAE in reliable class
specific sampling. This is unexpected because the main
point of CVAE is to be able to reliably perform class spe-
cific sampling. We hypothesize that by allowing for many
dimensions of the latent space to be shared amongst all the
classes, and providing the first 10 dimensions with the free-
dom to pick a particular class, the model is able to delegate



shared features to certain dimensions, and more unique ones
to others. This more robust latent space may be the source
of our method’s success.

After all of these qualitative results that seem to support
the idea that our Lambda-Hot Cluster VAE method works
better at creating a categorically meaningful latent space,
we look to quantitative metrics to make sure that our method
has not sacrificed reconstruction loss. Table 5.1 shows that
our method has the lowest reconstruction loss (binary cross-
entropy loss) for both datasets. Thus, it is clear that our
model has preserved reconstruction ability in creating a cat-
egorically meaningful latent space, and qualitatively outper-
forms CVAE in class specific sampling.

As a sanity test to see just how well our model naively
performs, we try to use our encoder as a classifier in a
very simple way. Given a datapoint z;, we feed it into
the encoder and receive z; as the embedded latent vec-
tor. Then, we take the argmax amongst the first 10 di-
mensions, and classify the point. This comes from the idea
that the distribution the point z; comes from is centered at
[A,0,0,0,0,0,0,0,0,0] for y; = 0. When we perform this
naive classification, we find that it has a 91.9% accuracy
for MNIST and 81.27% accuracy for FashionMNIST. This
shows us that the distributions are indeed very good indica-
tors of what class the datapoints are coming for. There is
no reasonable other VAE algorithm we could compare to,
because no other model to our knowledge is built to create
this categorical structure.

Method/Dataset | MNIST | FashionMNIST
Regular VAE 80.97 228.87
Beta VAE 120.76 250.37
Conditional VAE 80.15 228.14
Lambda-Hot VAE | 79.92 227.39
K-Means VAE 77.59 225.68

Table 1. Reconstruction loss for the different models

5.2. K-Means Clustering

K-Means clustering in the latent space is an unsuper-
vised method, so it is most reasonable to compare it to
other unsupervised methods such as Beta-VAE and regular
VAE. First, we evaluate the latent space clustering of our K-
Means method by looking at the tsne representation of the
latent space, as depicted in Figures 5.1 and 5.1. Our method
has clear clusters in the latent space, as we expected. How-
ever, these clusters do not always correspond to class labels.
At least in the tsne representation, some clusters apparently
include multiple classes. Thus, our latent space is clearly
more separable than regular VAE. However, it is not clear
whether K-Means Clustering learns a better latent space
representation than Beta-VAE. We claim that our method
provides a comparable latent space to Beta-VAE.

Next, we evaluate the K-Means Clustering VAE’s abil-
ity to sample from its latent space. Specifically we sam-
ple from specific cluster centers in the latent space. Note,
however, that these clusters do not inherently correspond to
class labels. The clusters were simply found during train-
ing and represent the natural variation in the data. We see
in Figure 5.2 that the K-Means clusters have learned infor-
mation about classes. For example, in the Fashion-MNIST
network, there are clusters that clearly represent short sleeve
shirts, long sleeve shirts, pants, purses, boots, and shoes.
Interestingly, some of the classes were split into multiple
clusters. For example, the boot class was split into boots
with low heels and boots with very high heels. Furthermore,
some classes, like the sandals class, is underrepresented in
our sampled data. We see similar results with MNIST. Ze-
ros and sixes seem to have their own clusters. Ones, on the
other hand, have been split into multiple clusters: diagonal
ones and straight ones. Furthermore, some clusters are less
clear cut. For example, eights and threes are grouped to-
gether, as are fours and nines. This makes sense intuitively,
as eights and threes, as well as fours and nines are visu-
ally similar. For an unsupervised method, K-Means pro-
vides a strong ability to sample from semantic groups in the
data. The cluster samples are mostly visually compelling.
Although, the reconstructed samples are less clearly hand-
written digits in the clusters that include multiple classes.
For example, the samples from the first cluster of MNIST
that seems to represent fours and nines produces visually
distorted images.

Finally, we evaluate the reconstruction ability of the K-
Means Clustering VAE. Qualitatively, looking at Figure 5.2,
we see that the K-Means algorithm is able to successfully
reconstruct images with high precision. We examine this
quantitatively as well. In Table 5.1, we show that K-Means
VAE performs better than all other methods for reconstruc-
tion. Essentially, K-Means VAE has all of the reconstruc-
tion benefits of regular VAE with all of the clustering and
latent space benefits of Beta-VAE. In that sense, K-Means
is the best method to use according to our metrics in the
unsupervised setting. It has the lowest reconstruction on
both MNIST and FashionMNIST of all methods, and also
has a semantic latent space. The downsides of the K-Means
method is that the clusters that it creates do not always cor-
respond to actual classes. However, this is completely rea-
sonable as we are not providing the network with class in-
formation.

6. Conclusion

We presented two new methods of modifying Varia-
tional Autoencoders to achieve semantically meaningful la-
tent representations: Lambda-Hot Clustering and K-Means
Clustering. Both of these methods modify the KL Diver-
gence loss term in the VAE loss function to support cluster-



ing in the latent space.

Lambda-Hot Clustering is a supervised method simi-
lar to Conditional-VAE because it allows for class-specific
sampling of the latent representation for generating new
data. We show that this method outperforms Conditional-
VAE in both image reconstruction and qualitatively in class-
specific sampling. Furthermore, Lambda-Hot VAE pro-
vides a more intuitive visualization of class information
in the latent space than Conditional-VAE. This is because
Conditional-VAE intentionally avoids clustering in the la-
tent space and instead relies on the addition of a separate
non-random label to be concatenated to the latent vector for
sampling. This results in a visually messy latent space.

K-Means Clustering is an unsupervised method like the
original VAE and like Beta-VAE. We show that our K-
Means Clustering method provides similar latent clustering
to Beta-VAE. However, better clustering in Beta-VAE re-
sults in high reconstruction error. K-Means Clustering VAE
has the semantic latent space of VAE with the reconstruc-
tion error of (better than) regular VAE. In fact, of all the
methods we tried, K-Means clustering gave the best recon-
struction error on both Fashion-MNIST and MNIST. Thus,
by our metrics, K-Means Clustering VAE is easily the best
unsupervised method to use.

6.1. Future Work

We present the following as possible avenues for future
work:

e Expanding the size of our experiments. Due to com-
putation constraints, we evaluated our method on only
small datasets with small models. In the future, we
should experiment with our method on larger, more
complex datasets using deeper and more complex
encoder-decoder models.

e Expanding the scope of our experiments. For the pur-
pose of this research, we focused on the image domain.
However, we could just as easily apply our method to
text, audio, and more. While we expect that our clus-
tering methods will hold up in varying domains, this
should still be experimentally confirmed.

e Movable supervised clusters. In this research we ex-
perimented with fixed Lambda-Hot clusters in the su-
pervised setting. However, it is also conceivable to al-
low flexible clusters with a fixed Lambda-Hot prior.
This would combine our Lambda-Hot method with our
K-Means method. In our Lamdba-Hot method, all
classes are given linearly independent and equidistant
clusters. In real life, though, some pairs of classes will
be more similar than others. Implementing movable
clusters would allow our latent representation to better
represent the variation in classes.
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Figure 2. Latent space from encoding test points, with each color
denoting a particular class label for MNIST. From top to bottom:
Regular VAE, Beta-VAE, Lambda-Hot Cluster VAE, K-Means
Cluster VAE
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Figure 3. Latent space from encoding test points, with each color
denoting a particular class label for FashionMNIST. From top to
bottom: Regular VAE, Beta-VAE, Lambda-Hot Cluster VAE, K-
Means Cluster VAE
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Figure 4. Comparison of generated images between Conditional
VAE (left) and Lambda-Hot Cluster VAE (right) on MNIST. Each
row shows samples that are specifically picked from the latent
space to be of that label.

Figure 5. Comparison of generated images between Conditional
VAE (left) and Lambda-Hot Cluster VAE (right) on FashionM-
NIST. Each row shows samples that are specifically picked from
the latent space to be of that label.
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Fashion-MNIST (left) and MNIST (Right). Each row corresponds
to one of the K-Means clusters.
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Figure 7. Reconstructions (bottom) of original images (top) for
Fashion-MNIST (left) and MNIST (Right)
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