
Analyzing Policy Distillation on Multi-Task Learning and
Meta-Reinforcement Learning in Meta-World

Nathan Blair, Victor Chan and Adarsh Karnati

Abstract— Policy distillation partitions a Markov Deci-
sion Process into different subsections and learns expert
policies in each individual partition before combining
them into a single policy for the entire space. Similar to
how a sports team has different positions that each con-
tribute their own abilities to the team, policy distillation
leverages the structure of a Markov Decision Process by
first learning partition-specific experts that do not need
to generalize as widely. When combined into one global
policy, the experts each contribute the learned features
from their partitions. Depending on which part of the
state space the global policy faces, it can take advantage
of the features it has gained from the local policy for that
partition.

Meta-reinforcement learning and multi-task learn-
ing are very closely intertwined fields. While meta-
reinforcement learning aims to quickly solve new tasks
based on prior experience, multi-task learning focuses
more on the ability of an algorithm to generalize to a
wide distribution of tasks at the same time. However,
successful meta-learning is typically correlated with bet-
ter performance on multi-task learning, and vice versa.
An agent that can quickly adapt to a new task is, by
definition, better at learning that new task; similarly, an
agent that has generalized to many tasks is likely to learn
more quickly when presented with a new but related task.
Because both meta-learning and multi-task learning are
composed of many individual tasks, they are naturally
propitious to partitioning. Policy distillation has shown
promise in multi-task learning, but the results are limited
and not extensively studied. We explore the application
of a policy distillation algorithm, Divide-and-Conquer, to
the Meta-World benchmark.

Divide-and-Conquer (DnC) is a policy distillation algo-
rithm that uses a context to represent information on the
partitions of a state space. Based on these contexts, local
policies are trained with KL divergence constraints to

keep them similar to one another. They are combined into
a global policy with another KL divergence constraint.

Meta-World is a new benchmark for multi-task learn-
ing and meta-learning. We analyze DnC’s performance
on both the meta-learning (ML) and the multi-task
learning (MT) benchmarks, using Trust-Region Policy
Optimization (TRPO) as the benchmark. For the ML
benchmark, we partition the state space by the separate
tasks for DnC. During meta-training, we use the training
tasks as the partitions for DnC without the test tasks;
once we have the final global policy from meta-training,
we apply it to the test tasks to determine final rewards
and success rates. For the MT benchmark, we again
partition the state space by separate tasks. However, there
are no held-out tasks–DnC trains on all of the tasks and
is tested on them. Each individual task also has variable
goal states, so the local policies must learn how to adapt
to these variable states. The global policy must not only
learn to solve the distinct training tasks, but also it must
learn to adapt to different goal states within each task.

We find that DnC achieves the same performance as
our baseline, TRPO, on the meta-learning benchmark.
When we partition the state space into the individual
tasks, the local policies are able to properly learn to
solve each of the individual tasks successfully at a rate
of around 4-5%. The global policy composed of these
individual expert policies has the same performance and
success rate as the local policies. On the multi-task
learning benchmark, DnC achieves success rates around
65%. We believe that because DnC is a policy distillation
algorithm and multi-task learning test environments have
the same tasks in the train and test environments, DnC
can memorize each of the individual tasks and perform
well in all of them at test time. However, with meta-
learning, it is more difficult for DnC to adapt to new
tasks at test time, and therefore its performance is not
nearly as good.



I. INTRODUCTION

Reinforcement Learning (RL) algorithms seek
to teach an agent to perform desired actions in an
environment, based on a cumulative reward func-
tion. These models have been shown to perform
well on specific tasks, but it is well known that
many algorithms do not generalize well across
different tasks [1]. Meta Reinforcement Learning
aims to solve this issue by devising a training
procedure that allows agents to use experience
from prior tasks to learn how to learn a new task.
A meta-learning agent can be deployed in a variety
of different problem settings and learns an underly-
ing structure over several tasks. This generalizing
characteristic makes meta-learning agents highly
valuable and has led to significant research in this
direction.

Formally, the meta-learning problem formula-
tion is as follows. We seek to learn a policy π(s|a)
from a set of M tasks, {Ti}Mi=1. These tasks have
a distribution, p(T ), from which we draw training
tasks. After training, a new task, Tj is drawn from
p(T ) that our policy was not trained on, and used
to evaluate the learned policy. The goal of the agent
is to use the learned policy to accrue as much
reward as possible in the test task.

To this end, the authors of [1] developed and
published Meta-World, a set of benchmarks that
can be used to evaluate the ability of any rein-
forcement learning algorithm to meta-learn. Meta-
World contains 50 distinct robot manipulation
tasks organized into three benchmark environ-
ments, ML1, ML10 and ML45. ML1 trains an
agent to pick and place an object into several
specified goal regions and then tests the agent’s
ability to place an object into a new goal region.
ML10 trains an agent on ten unique tasks, such as
reaching and placing, and then tests how well the
agent can perform three related tasks, for example
drawer opening. ML45 is an expanded version of

ML10, with 45 training tasks and five test tasks.

Meta-World is a useful benchmark in that all
the tasks share the same environment and control
dynamics. This means that the diversity of tasks
is independent of the world structure, unlike in
previous meta-learning studies, which ran agents
on the Atari suite. Specifically, this composition
forces p(T ) to be broad enough to cover both
test and train tasks, but not too wide as to lose
similarity between tasks. The authors describe the
design procedure that embodies this balancing act
as parametric vs. non-parametric variation. Para-
metric variation refers to the dissimilarity of tasks
only being described by a change in a fixed number
of variables. Therefore, the tasks in meta-world
were designed to be non-parametric, that is, the
difference in tasks cannot be described by a change
in parameter values. This means, for example, that
agents trained on moving an object to a goal state
do not simply use memorization to handle a test
task such as opening a door.

In [1], the reinforcement learning algorithms,
RL2, model-agnostic meta-learning (MAML) and
probabilistic embeddings for actor-critic reinforce-
ment learning (PEARL) are tested on the Meta-
World environment. In this paper, we will explore
the meta-learning capabilities of the so called
divide-and-conquer reinforcement learning (DnC)
algorithm.

At a high level, DnC partitions the environment
state space into slices and trains a policy on each
of these slices, eventually merging the ensemble
to act on the entire state space. In most use cases,
reinforcement learning agents must interact in a
highly stochastic environment. This uncertainty
can make training a policy difficult, as policy
gradients can be noisy and therefore uninformative.
The issue stems from using a variety of initial start
states during training, which is necessary to ensure
sufficient state space exploration.



Fig. 1. The ML45 Train and Test Tasks from Meta-World

The key insight in [5] is that the underlying
Markov Decision Process the agent acts in is modi-
fied to include a context. A context is a variable on
which the initial state is conditioned on, and can be
thought of as an added state variable to the system.
The context variable indicates the partition that the
agent is in. During training, initial states are ran-
domly sampled and different context variables are
associated to each state. For each partition, local
policies are trained by minimizing a bound on an
intractable relative entropy (KL-Divergence) loss
function, which ensures that individual policies do
not diverge from each other.

The authors of [5] evaluate the performance
of three versions of DnC, regular, Centralized
and Unconstrained, on five tasks. Centralized DnC
differs from the regular DnC algorithm in that
an oracle identifies the context for each partition
policy, so the agent does not need to perform infer-
ence on the context. Unconstrained DnC does not

use any KL-Divergence constraints when training
the policies. Of the five tasks, three are robotic
manipulation environments using a simulated Ki-
novo Jaco; the tasks are picking an object and
raising it, lobbing an object into a goal region
and catching a ball thrown to the robot. On these
manipulation tasks, regular DnC performs the best,
in comparison to the two DnC variants as well as
the TRPO and Distral algorithms.

In this study we analyze the performance of the
vanilla DnC algorithm on Meta-World to gain in-
sight into the algorithm’s abilities in meta-learning
and multi-task learning. We believe DnC is well
suited to be evaluated on Meta-World due to
its success on robotic manipulation tasks in [1].
Qualitatively, we believe DnC is a good candi-
date for meta-learning because of the algorithm’s
partitioning approach. By splitting the state space
into contexts, DnC may be well suited to distilling
the knowledge from training tasks. Additionally,



though DnC has been shown to perform well
on single manipulation tasks, showing it has the
ability to meta-learn would further bolster the effi-
cacy of the algorithm for real world reinforcement
learning.

Our main contributions are listed below:

• We discuss literature that analyzes the DnC
algorithm and the performance of other algo-
rithms on the Meta-World benchmark.

• We run DnC on the ML10 task-set in Meta-
World and discuss the implications

• We run DnC on the ML45 task-set in Meta-
World and discuss the implications

• We run DnC on the MT10 task-set in Meta-
World and discuss the implications

• We show that DnC performs well on the
MT10 task.

II. RELATED WORKS

In recent years, meta-learning has become an
increasingly rich area of study in the reinforcement
learning field. Meta-learning has been explored
in environments such as navigation [2], [4], the
Atari suite [6] and simulated locomotion [7]. The
Meta-World benchmark is one of the first instances
of using manipulation tasks to evaluate meta-
learning. Also, Meta-World presents a sufficiently
difficult set of tasks, as robotic manipulation is
high dimensional. Meta-World was inspired by
the Multi-World framework, which wraps over the
gym API [9]. Multi-World contains a variety of
multi-task-learning environments that can be used
as benchmarks.

One related benchmark for reinforcement learn-
ing is the Robot Learning Benchmark (RLBench)
project [11]. RLBench is a collection of 100 dis-
tinct robotic manipulation tasks, each of which are
hand-crafted. RLBench was designed for a variety
of reinforcement learning tasks and is not specif-
ically focused on meta-learning for reinforcement
learning algorithms. For our purposes, Meta-World

is the best choice to evaluate DnC, as it is already
clear that DnC performs well on manipulation
tasks.

The biggest challenge in meta-learning is task
overfitting, where the agent memorizes the training
tasks and cannot adequately generalize to test
tasks. In [2], a recursive neural network is used
to encode the prior task experience. This algo-
rithm trains the network weights using classical
reinforcement learning algorithms, while using the
network activations as a policy.

The DnC algorithm shares similarities with [3],
in which several local policies are trained and
distilled to create a final global policy. However,
in DnC, each local policy is represented by a deep
neural network, greatly improving the capacity of
each policy. Additionally, DnC enforces relative
entropy constraints pairwise over each partition
policy, rather than to the global policy.

The Distral algorithm, [4], uses a similar dis-
tillation scheme as in DnC, where policies for
different tasks are distilled to produce a shared
policy, which then is used to regularize the task
specific policies. Distral was developed in the
multi-task learning framework, the goal of which
is to improve the ability of a policies to learn
tasks by sharing learned representations. On robot
manipulation tasks, DnC was shown to outperform
Distral, mainly due to the more efficient distillation
and transfer of information of local policies in the
former.

DnC also compares well to Option Learning in
[10]. In Option Learning, options are specialized
policies constrained to solving a simple task with
the addition that these policies can terminate the
episode at any given time. The authors of [10]
detail an algorithm to find these options, which
involves a clustering approach similar to the DnC
partitioning scheme. Option Learning differs from
DnC in that the actual policies are not represented



Fig. 2. Average Return for DnC and TRPO on ML10 and ML45 Tasks

by deep neural networks. Additionally, Option
Learning has only been tested in discrete state
space environments with finite action spaces.

III. METHODS

To apply DnC to the meta-learning task, we
altered the Meta-World environment. In particular,
we partitioned the Meta-World environment into
smaller subtasks for DnC to train on. The most
intuitive split of the Meta-World environment was
built in: splitting across meta-task in the train set.
We did this for three brenchmarks: the ML10,
ML45 and MT10 tasks. In this process, we had
to alter the Meta-World environment to interface
it with the DnC algorithm. For this project, we
used the DnC code that is available online and was
released with the paper from Ghosh et. al. [5].

We chose to use the original DnC algorithm,

as opposed to the unconstrained and centralized
variants, mainly because this version of the algo-
rithm performed the best on manipulation tasks.
The DnC algorithm runs on top of a version of
trust region policy optimization (TRPO). We use
the adapted TRPO surrogate loss for our training as
this has been shown to work well on Meta-World
tasks for other algorithms.

IV. EXPERIMENTS AND RESULTS

A. Setup

We ran our experiments on an NVIDIA 2070
GPU using a batch size of 20,000 and for 500
iterations. For all of our experiments we use a
gaussian MLP policy which is defined in the
RLLab codebase [8]. RLLab is the foundation
for the DnC codebase. For our policy network
we use hidden sizes of (150, 100, 50) and a



Fig. 3. The Success Rate of DnC on ML10

minimum standard deviation of 0.01. In all runs
we used a batch size of 20000 and 500 iterations
of training. However, we noticed that the training
tended to converge much more quickly than 500
iterations, peaking after around 50 iterations and
then hovering around the same average return for
the rest of the training process.

B. ML10

We ran our augmented DnC algorithm on the
ML10 Meta-World task. This meta-task tests the
ability of an algorithm to adapt to new tasks. There
are ten train tasks that the algorithm learns from,
and five test tasks that are unseen before train time.
From Figure 2 we can see that the Train Average
Reward for the DnC algorithm achieves slightly
more reward, on average, than the TRPO baseline,
both methods plateuing after around 50 iterations.

During training, DnC reaches a maximum reward
of 27685, but TRPO hits 27697.

Additionally, we see that DnC produces a higher
Test Average Return than TRPO, on ML10. DnC
accumulates a return of 28142 while TRPO only
achieves 27561. This may suggest that DnC is able
to generalize better than TRPO and actually learn
from the training tasks. However, this difference is
most likely due seed noise, and it is more likely
that TRPO and DnC perform roughly the same on
the ML10. It is also possible that a careful hyper-
parameter tuning would make the differences be-
tween the two algorithms more apparent.

Figure 3 illustrates the success rate of the DnC
algorithm on the ML10 tasks. We see that the suc-
cess rate averaged over all tasks and partitions does
not achieve much higher than 6%. This result is



Fig. 4. The Success Rate of DnC on MT10

much worse than the success rates of MAML, RL2

and PEARL, which achieve 25%, 50% and 42.78%
respectively. In comparison to average train and
test return, success rate is a far better metric of
whether an agent has meta-learned. Because of
this, it is most likely that DnC is not well suited
for meta-learning.

C. ML45

In Figure 2 the results for running DnC on the
ML45 Meta-World tasks are presented. We can see
that the Train Average Return for both TRPO and
DnC are similar, as was the case in the ML10
results. Additionally, the TRPO algorithm achieves
a maximum train return of 27480, compared to the
DnC algorithm’s maximum reward of 27205. How-
ever, DnC reaches a higher Test Average Return
than TRPO, accruing a reward of 27335 compared

to 27190. This result also suggests that DnC is
able to generalize better to the test tasks and
therefore meta-learn. We note that the difference
in maximum Test Average Reward between TRPO
and DnC is greater for the ML10 tasks than it is for
the ML45 tasks. This may be attributed to the fact
that ML45 is a more challenging task set due to
the more than four times as many training tasks the
agent experiences. Similar to in ML10, the overall
return for both DnC and TRPO is roughly the same
in ML45, so we believe both algorithms perform
the same on meta-learning tasks.

D. MT10

MT10 is a multi-task learning objective where
the task is identified to the network through a one-
hot vector. The train and test tasks are the same.
Our modification of the DnC algorithm performed



very well on this task, especially compared to
it’s performance on the meta-learning tasks. Our
algorithm achieved a success rate of around 65%,
outperforming all but the strongest benchmark
posted for the Meta-World paper. In [1], they
reported a success rate of 88% on the MT10 task
for the Multi-task multi-head SAC. This vastly
outperforms all other models on the task; the next
best model achieves less than 40% success rate.

This shows that DnC is a very good algo-
rithm for multi-task learning. It is able to out-
perform most other models that were tried on
the benchmark. We believe this is due to DnC
being a policy distillation algorithm, with many
local expert policies taking care of each individual
partition. As a result, the local policies are able
to memorize the different partitions of the state
space and perform well on each individual task.
The distillation objective succeeds at carrying over
the learned features from the local policies to the
global policy.

On the other hand, DnC does not seem to do
as well with meta-learning. Because the individual
policies are only tuned to the seen tasks, they are
unable to perform as well on new tasks, even if
the test tasks are similar. More work remains to
be done to determine whether DnC is a suitable
algorithm for meta-learning.

V. CONCLUSION

Our DnC model performed very well on the
MT10 multi-task MetaWorld benchmark. How-
ever, it performed similarly to our benchmarks on
the ML10 and ML45 meta-learning benchmarks.

DnC and TRPO perform similarly on the Meta-
World meta-learning tasks. We did not see DnC
perform significantly better than the TRPO base-
line, despite our hypothesis. This could be a result
of hyperparameter and model architecture tuning.
Both of our tests reached relatively low success
rates compared to the benchmarks in the original

Meta-World paper. It is possible that if both models
performed better, the DnC model would have more
room to distinguish itself. It is also possible, how-
ever, that the two models have similar capacity on
the Meta-World benchmark, and that training with
the DnC algorithm does not significantly improve
performance.

Many of the issues we faced in this project were
related to merging the DnC and Meta-World code-
bases, where we ran into dependency problems.
Given more time we would have extended our
work by performing a hyperparameter sweep on
the KL-Divergence constraint. The sensitivity of
this hyperparameter was noted in the original DnC
paper, so this might have been a reason why our
success rate did not match the other baselines.

There are many possible extensions of the work
in this paper. As we noted, we believe that a careful
hyperparameter sweep on the KL-Divergence con-
straint may have improved our performance and
given us more reliable results. It would also be
interesting to see the performance of algorithms
such as Distral on the Meta-World benchmark.
These would give additionally insight into the
ability of policy distillation to generalize to novel
test environments. We could also test DnC on
the larger MT50 task to see if it is still able to
outperform other models on a more difficult task.
Finally, larger models may have the capacity to
outperform our models on the Meta-World tasks.

The DnC algorithm is especially promising for
multi-task learning. However, it remains to be seen
whether or not a DnC-like algorithm will yield
compelling results on the meta-learning task.

VI. CONTRIBUTIONS

The three of us contributed equal work to the
project. We all spent time writing code, debugging,
plotting, and writing the final paper.



REFERENCES

[1] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, S. Levine,
and C. Finn, “Meta-world: A benchmark and evaluation for
multi-task and meta reinforcement learning,” https://meta-
world.github.io, 2019.

[2] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever,
and P. Abbeel. RL2: Fast reinforcement learning via slow
reinforcement learning. CoRR, abs/1611.02779, 2016.

[3] Sergey Levine and Vladlen Koltun. Guided policy search. In
ICML, 2013.

[4] Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki,
John Quan, James Kirkpatrick, Raia Hadsell, Nicolas Heess,
and Razvan Pascanu. Distral: Robust multitask reinforcement
learning. In NIPS, 2017.

[5] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar,
Sergey Levine. ”Divide-and-Conquer Reinforcement Learn-
ing”. Proceedings of the International Conference on Learning
Representaions (ICLR), 2018.

[6] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman.
Gotta learn fast: A new benchmark for generalization in rl.
arXiv:1804.03720, 2018.

[7] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel,
S. Levine, and C. Finn. Learning to adapt in dynamic,
real-world environments through meta-reinforcement learn-
ing. arXiv:1803.11347, 2018.

[8] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, Pieter
Abbeel. ”Benchmarking Deep Reinforcement Learning for
Continuous Control”. Proceedings of the 33rd International
Conference on Machine Learning (ICML), 2016.

[9] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S.
Levine. Visual reinforcement learning with imagined goals. In
Advances in Neural Information Processing Systems, 2018.

[10] Roy Fox, Michal Moshkovitz, and Naftali Tishby. Principled
option learning in markov decision processes. In European
Workshop on Reinforcement Learning (EWRL), 2016.

[11] Stephen James, Zicong Ma, David Rovick Arrojo, and An-
drew J. Davison. Rlbench: The robot learning benchmark
learning environment. arXiv preprint arXiv:1909.12271, 2019.


