NATHAN BLAIR

2606 Fulton St., Berkeley, CA 94704 • 818 404-0613 • nblair@berkeley.edu• nathanblair.me

EDUCATION

University of California, Berkeley Berkeley, CA Bachelor of Science in Electrical Engineering and Computer Science Graduate Coursework: Computer Vision, Trustworthy Deep Learning, Deep Reinforcement Learning, Linear System Theory	May 2020 GPA: 3.821
<i>Undergraduate Coursework:</i> Machine Learning, Artificial Intelligence, Jazz Improv, Algorithms, Comp. Photography, Probability and Random Processes, Optimization Methods, Linear Algebra and Differential Equations, Data Structures, Signals and Systems, Discrete Math and Probability Theory, Computer Architecture	
EXPERIENCE	
NASA JPL Computer Vision Intern (Asteroids)	June 2019 – August 2019
 Built machine learning models for classifying near earth objects. Compared deep neural networks, linear models, kernel models, and random projection methods. Designed robust visualization methods for model explainability. Acted as the sole machine learning scientist on my team. 	Jane 2017 Tragate 2017
UC Berkeley Machine Learning and Control Research with Claire Tomlin	January 2018 – June 2019
 Design new data-efficient machine learning methods for controlling complex robotics systems. Test our methods on real "turtlebot" machines and compare the results to established ML algorithms Compare results in the real world to results in simulation. Consider safety guarantees for complex, risky and poorly understood real world environments. 	January 2010 June 2013
NASA JPL Computer Vision Intern (Comets)	June 2018 – August 2018
 Trained a faster-rcnn neural network to detect bright comets in infrared data taken by the WISE satellite. Built a library for object detection on astronomical data that extends Tensorflow's object detection API. Wrote scripts for neural network training and evaluation, data collection, and image annotation Typed over 4000 lines of commented and tested Python code. 	June 2018 – August 2018
Caltech Research Support Intern	, May 2015 – August 2016
 Performed daily quality assurance checks on minor planet candidates. Discovered previous undetected comets by "stacking" candidate images. Published Co-Author of "The NEOWISE-Discovered Comet Population and the CO+CO2 Production Rat 	
PROJECTS	
Encouraging Categorical Meaning in the Latent Space of a VAE	
• Augmented the variational auto-encoder loss function to encourage latent clustering for multi-class datasets	

Automatic Plunderphonic Musical Textures

• Recreates any piece of music from similar samples of songs from a large database of specified genre, resulting in glitchy textures

SKILLS AND INTERESTS

Languages:Python, ChucK, MaxMSP, Java, MATLAB, C, JavaScript, SQL, PHP, RISC-V, Scheme, HTML, CSSLibraries:Numpy, Matplotlib, Tensorflow, PyTorchAcademic Interests:Machine Learning, Generative Music, Computer Music, Generative Art, AI, Ethical and Safe LearningMusic & Music Software:Piano, Vibraphone/Percussion | Ableton Live, REAPER, MuseScore | Cycling74/MaxMSP, ChucK